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Abstract
Informed citizens are expected to use science-based evidence to make decisions about
health, behavior and public policy. To do so, they must judge whether the evidence is
consistent with the claims presented (theory-evidence coordination). Unfortunately,
most individuals make numerous errors in theory-evidence coordination. In this
chapter, we provide an overview of research on science evidence evaluation, drawing
from research in cognitive and developmental psychology, science and statistics
education, decision sciences, political science and science communication. Given the
breadth of this research area, we highlight some influential studies and reviews across
these different topics. This body of research provides several clues about: (1) why
science evidence evaluation is challenging, (2) the influence of the content and context
of the evidence and (3) how the characteristics of the individual examining the
evidence impact the quality of the evaluations. Finally, we suggest some possible
directions for empirical research on improving evidence evaluation and point to the
responsibility of scientists, especially social and behavioral scientists, in communicating
their findings to the public. Overall, our goal is to give readers an interdisciplinary view
of science evidence evaluation research and to integrate research from different scien-
tific communities that address similar questions.
1. INTRODUCTION

People are regular consumers of science claims presented in newspa-
pers, advertisements, scientific articles and word of mouth (Baram-Tsabari
& Osborne, 2015; Bromme & Goldman, 2014). Consider the following
headlines:
Lifting Lighter Weights Can Be Just as Effective as Heavy Ones.
NY Times (July 20, 2016)

Dose of nature is just what the doctor ordered.
Sciencedaily.com (June 23, 2016)
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Why scientists think your social media posts can help prevent suicide.
Mashable (June 26, 2016) 1
Informed citizens are expected to use this information to make decisions
about health, behavior, and public policy (Kolstø et al., 2006;
Lewandowsky, Ecker, Seifert, Schwarz, & Cook, 2012). However, media
reports of research often overstate the implications of scientific evidence,
overlook methodological or statistical flaws or even present pseudoscience
(Bromme & Goldman, 2014). People need to learn to distinguish between
high quality science, low quality science and pseudoscience (Anelli, 2011;
Miller, 1996, pp. 185e204; Sagan, 1996a, 1996b; Trefil, 2008).
Unfortunately, students and sometimes even trained scientists make errors
when reasoning about evidence (Halpern, 1998). In fact, more than 70%
of American adults report to believe in paranormal phenomena (Halpern,
1998), and a similar percent of Americans acknowledge holding at least
one pseudoscientific belief (Moore, 2005). One-third of Americans think
evolution is “absolutely false” and another 21% is not sure (Miller, Scott,
& Okamoto, 2006). Only 43% understand that the earth is billions of years
old (Bishop, Thomas, Wood, & Gwon, 2010), and only about 30% of
American adults can read and understand the science section of the New
York Times (Anelli, 2011).

Poor evidence evaluation skills are especially problematic for issues
related to public policy and personal choices. About one-third of the
population in the United States does not believe that climate change
is caused by human activity, and of six different countries, US
individuals are least concerned (Gallup, 2016; Shi, Visschers, Siegrist, &
Arvai, 2016). In addition, over half of Americans believe that genetically
modified foods are unsafe despite fairly strong evidence that they are safe
(Langer, 2015). The ability to understand scientific evidence, including
evaluating the statistical properties of evidence, is associated with difficulty
in risk perception and medical decision making (Galesic & Garcia-
Retamero, 2011; E. Peters, 2012; J.D. Peters, 2012; Reyna, Han,
Deickmann, 2009).

The current state of science, combined with the nature of scientific
writing in the media, adds to the confusion. Consider a question of relevance
to cognitive scientists, the extent to which “brain training” might have a
positivedreal lifedimpact on cognitive abilities in individuals. There
eynolds (2016), Sciencedaily.com (2016) and Ruiz (2016).
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have been a recent barrage of media articles on this topic, and they all seem
to provide contradictory recommendations and conclusions. A quick search
on Google News on July 28, 2016 found the following headlines, all
published within the last several days: ones that suggest “brain training” is
not effective (“Brain Training Does Not Improve Academic Outcomes in
Kids”, ““Brain training” boost might just be a “placebo” effect, study
finds”), ones that purport that brain training is promising (“Could “Brain
Training” Games Actually Work? New Study Surprises Scientists”, “Brain
training game for troops tackles effects of combat”, ““Brain training” cut de-
mentia risk in healthy adults”), and ones that suggest a more complex picture
(“All brain training protocols do not return equal benefits, study reveals”.).
How can even educated readers make sense out of these headlines? Is it so
unfair for readers to simply assume that scientists do not know what they
are talking about, especially when there are headline grabbing articles
suggesting that much of psychological science cannot be replicated (Open
Science Collaboration, 2015; Pashler & Harris, 2012)? Thousands of
fMRI studies have errors in data analysis (Eklund, Nichols, & Knutsson,
2016), scientists are accused of “p-hacking” or fishing for publishable results
(Ioannidis, 2008; Simmons, Nelson, & Simonsohn, 2011), and for many
scientific concepts (like brain training) there is no scientific consensus
(Katz & Shah, 2016a). Throughout this paper, we refer to the context of
brain training to illustrate the challenges of evidence evaluation to the lay
reader.

One might ask, is it not the goal of our educational system to teach
students the inquiry skills necessary to critically evaluate scientific evidence
and to assess whether or not evidence is consistent with claims or theories
(Lehrer & Schauble, 2006; Next Generation Science Standards, 2013;
Kolstø et al., 2006; Kuhn, 2001)? It is clear that teaching science content
alone does not help students reason about science (Crowell & Schunn,
2016). As an example, though Chinese students learn a great deal more sci-
ence content than US students, Chinese and US students perform equiva-
lently on a standard measure of scientific reasoning (Bao et al., 2009;
Lawson, 1978). At least one study found that people who had taken eight
or more college science courses did not do much better on some scientific
reasoning tasks than high school students (Norris & Phillips, 1994; Norris,
Phillips, & Korpan, 2003), though many other studies find that college ed-
ucation and college training in scientific reasoning does at least correlate
with better performance on science evidence evaluation tasks (Amsel
et al., 2008; Burrage, 2008; Huber & Kuncel, 2015; Kosonen & Winne,
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1995; Norcross, Gerrity, & Hogan, 1993). In another example, knowledge
about the physical characteristics of climate change is actually associated with
less concern about climate change (Kahan et al., 2012).

Several factors may contribute to the difficulty of applying scientific
inquiry skills to everyday contexts, especially those that involve making
personal or political decisions about health, behavior and social science
data. Everyday contexts tend to evoke experiential thinking rather than
analytic thinking (Kahneman, 2011). This tendency to think about one’s
own prior experiences is exacerbated by features of media writing, such as
the inclusion of personal anecdotes, which increases tendencies towards
experiential thinking and significantly decreases deeper analytic thinking
(Rodriguez, Ng, & Shah, 2016; Rodriguez, Rhodes, Miller, & Shah,
2016). Science writers themselves may, perhaps inadvertently, take advan-
tage of people’s motivations and biases. In one analysis of headlines in the
New Scientist, for example, one of the most frequent noncontent words
used was “your” (Molek-Kozakowska, 2014), presumably to emphasize
the relevance to the reader but also likely to activate personal beliefs.
Although the reliance on heuristic thinking may explain many poor evi-
dence evaluation outcomes, it is clear that relying on analytic thinking is
not always sufficient for high-quality evidence evaluation, and sometimes
individuals who are actually good at evidence evaluation in neutral contexts
are even more polarized when evaluating evidence relevant to their own
identities (Kahan, Peters, Dawson, & Slovic, 2013).

As the discussion above suggests, people are highly influenced by their
own prior beliefs when evaluating evidence (see Evans & Curtis-Holmes,
2005; Klaczynski, 2000; S�a, West, & Stanovich, 1999, for some examples).
Likewise, people are motivated reasoners and are influenced by their hopes and
emotions in addition to their prior beliefs, especially when the context of the
evidence is relevant to decisions in their own lives (Klaczynski, 2000;
Kunda, 1990; Lord, Ross, & Lepper, 1979; Sinatra, Kienhues, & Hofer,
2014). When evaluating evidence that is congruent with prior beliefs, there
is a tendency to rely on heuristic thinking (“that makes sense to me”) and not
engage in analytic thinking. Thus, beliefs and tendency towards heuristic
thinking often go hand in hand. In contrast, belief-incongruent evidence
often triggers analytic thinking.

Finally, studies of everyday health and behavior contexts, by practical ne-
cessity, often incorporate potential threats to scientific validity, and thus
require significant attention to these issues. A large portion of work in epide-
miology, economics and public health involves correlational data, and even
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when the data are “big” and many factors are statistically controlled, it is hard
to evaluate whether or not the conclusions are sound; such evaluations are
made by scientists in the context of knowledge about other studies and
mechanistic models (e.g, Shiffrin, 2016; Vandenbroucke, Broadbent, &
Pearce, 2016). Scientists themselves are in large part responsible for overstat-
ing the implications of their own findings. In one recent analysis of 462
health science press releases, Sumner et al. (2014) found that 40% contained
advice that overstated the implications of the findings, 33% exaggerated the
causal implications of correlational findings and 36% made inappropriate
inferences regarding animal research. The authors of this study also analyzed
the media articles that were written based on these press releases and found
that the media articles are not adding to the exaggeration problemdrather,
the exaggeration seems to arise from press releases themselves, which are
presumably vetted by the scientists who conducted the research.

Whatever the reason, college students and laypersons rarely notice com-
mon inferential reasoning errors in everyday science contexts spontaneously,
especially when they have beliefs or behaviors consistent with those claims
(e.g., Rhodes, Rodriguez, & Shah, 2014; Rhodes & Shah, 2016a, 2016b;
Rodriguez, Ng, et al., 2016; Rodriguez, Rhodes, et al., 2016). Specifically,
people often accept correlational data as providing evidence of causality, fail
to notice poorly controlled studies such as those that include obvious
sampling bias, do not recognize low quality measurement or operationaliza-
tion of variables, are insensitive to effect sizes, and often do not pay attention
to important features of data such as sample size and variance (see for
example Fong & Nisbett, 1991; Rhodes et al., 2014; Rodriguez, Ng,
et al., 2016). They are also swayed by factors such as anecdotes (Rodriguez,
Ng, et al., 2016), irrelevant neuroscience (Fernandez-Duque, Evans,
Colton, & Hodges, 2015; Hopkins, Weisberg, & Taylor, 2016; McCabe
& Castel, 2008; Rhodes et al., 2014; Rhodes & Shah, 2016a; Weisberg,
Keil, Goodstein, Rawson, & Gray, 2008), irrelevant mathematical equations
(Eriksson, 2012), chemical formulas and graphs (Tal & Wansink, 2016).

Despite performing rather poorly across a range of everyday scientific
evidence evaluation and statistical reasoning tasks, people often report
learning about scientific reasoning flaws in science classrooms and indeed
often apply their knowledge when motivated to do so. For example,
most students in one of our studies report that they learned the methodolog-
ical issue at hand (e.g., participants should be randomly assigned to
conditions rather than selecting conditions); however, they rarely spontane-
ously refer to selection bias when evaluating evidence even when a study is
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clearly biased (see Rhodes et al., 2014). In other words, providing individ-
uals with knowledge about how to critically evaluate scientific evidence is
not enough to ensure that they will do so in everyday contexts. Further-
more, as we argue later in the paper, it is not clear whether or not the advice
given to clinicians and public policy experts regarding the hierarchy of
evidence [i.e, meta-analysis, systematic reviews, multiple randomized
control trials (RCT), a single RCT trial and on down the line; see for
example Concato, Shah, & Horwitz, 2000; D. Evans, 2003; J.S.B.T. Evans,
2003] or even statistical reasoning (i.e., large sample sizes are good) is appro-
priately interpreted.

The primary goal of this chapter is to review research on everyday
science evidence evaluation. Evidence evaluation is only one component
of scientific inquiry, but one of the more important and somewhat domain
general skills (Schunn & Anderson, 1999). This review does not focus on
other components of scientific inquiry such as hypothesis generation or
experimentation skills (Klahr & Dunbar, 1988). We begin with providing
a (purposely narrow) definition of quality evidence evaluation. We then
provide a necessarily limited review of the long history of research on
why people are not good at evidence evaluation, which documents the
problem without proposing an adequate solution. We outline how the char-
acteristics of information communication influence evidence evaluation
quality, and how individual differences also impact evidence evaluation.
Finally, we suggest some possible directions for empirical research on
improving evidence evaluation and point to the responsibility of scientists,
especially social and behavioral scientists, in communicating their findings
to the public.

2. DEFINING QUALITY EVIDENCE EVALUATION AS
THEORY-EVIDENCE COORDINATION
Theory-evidence coordination is a cornerstone of scientific reasoning
and, in particular, evidence evaluation (Kuhn, 2001). Theory-evidence
coordination involves judging whether or not evidence is consistent with
a particular theory or interpretation, and whether or not the evidence
provides adequate support for that theory. In everyday science, evidence
evaluation involves judging whether a particular study finding is consistent
with a claim or theories (usually a causal claim), is not consistent with any
other claims or theories (alternative explanations), and often, whether it
warrants making a recommended behavior or policy change.
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In this section we consider two of the media articles about brain training
cited above to illustrate theory-evidence coordination. The first, “Working
Memory Training Shows No Benefit for Academics in Children” (http://
www.neurologyadvisor.com) refers to a recent study “Academic outcomes
2 years after working memory training for children with low working
memory: a randomized clinical trial” (Roberts et al., 2016). The second is
Hurley (2016) “Can brain training prevent dementia?” based on an as yet
unpublished study presented at the Alzheimer’s Association annual meeting.
These articles were not selected at random; the first author of this chapter
wrote a brief letter in response to the Roberts article (Katz & Shah,
2016b), and her brother asked her, after reading a media report of the
dementia study whether he should purchase the training program for their
parents. Although our take on both of these articles is somewhat critical,
they are probably just as good or better than many studies on both sides
of the scientific debate on “brain training”, and our own work in this area
too has significant limitations. For either media report, the reader’s goal
might be to decide whether to purchase the software in question for his
or her child or aging parent. To do so, the reader would have to judge first
whether or not the research design and outcome supported the conclusions
that working memory training has no benefit on academics in children, or in
the aging parent scenario, that speed of processing training reduces the risks
of dementia.

In research methods, scientific reasoning errors are characterized as
“threats to validity” (Picardi & Masick, 2013; Reis & Judd, 2000). To
what extent are nonscientists able to identify threats to validity in the context
of theory-evidence coordination? The ability to recognize threats to scien-
tific validity is only minimally taught in k-12 science classrooms; it is most
often taught after students have taken courses in statistics or concurrently
with statistics during postsecondary education.

To generate some baseline data on the ability of college undergraduates
with differing experience and majors to recognize threats to validity, Burrage
(2008) asked 268 University of Michigan undergraduates to discuss and to
critically evaluate eight short vignettes describing scientific studies. Each
vignette contained one of four threats to validity (further described below):
causality bias, selection bias, poor construct validity and overgeneralization
of small effect sizes. An example vignette from her study is:
A study of 77 children, aged 3 to 5, found that those with the most body fat had
the most “controlling” mothers when it came to the amount of food eaten. “The

http://www.neurologyadvisor.com
http://www.neurologyadvisor.com
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more control the mother reported using over her child’s eating, the less self-
regulation the child displayed.”

Dr. Johnson and her coauthor said
The aforementioned vignette contains a threat to internal validity:
inappropriately drawing a causal conclusion from correlational data. When
asked to critically evaluate these vignettes, participants provided critique
of the methodology or quality of the evidence less than 60% of the
time and even fewer noticed target errors (e.g., interpreting correlational
data as causal). College seniors were significantly more critical and were
more likely to notice target flaws than freshmen. In addition, individual
levels of actively open-minded thinking (AOT) (Stanovich & West, 1997)
and need for cognition (NFC) (Cacioppo & Petty, 1982) predicted how
frequently participants noticed flaws. We refer to this and other studies
from our laboratory as we discuss individual threats to validity later.

2.1 Threats to Internal Validity
A threat to internal validity refers to a problem that makes it unclear whether or
not a dependent variable is affected by a treatment or independent variable
(e.g., an experiment where there is a confounding variable that varies along
with the independent variable).

2.1.1 Causality Bias
A common theory-evidence coordination error and problem of internal
validity (Reis & Judd, 2000) is drawing strong causal conclusions based on
correlational data or judging that those who do so are correct (Burrage,
2008; Hatfield, Faunce, & Job, 2006; Rodriguez, Ng, et al., 2016;
Rodriguez, Rhodes, et al., 2016). If two variables are correlated there are
several possible reasons: variable a causes variable b; variable b causes variable
a; variable c causes both a and b; there is an interaction such that a causes b
and in turn b causes a or the correlation is spurious or coincidental.

Nonetheless, people often interpret correlational data as supporting
causal claims. In fact, such reasoning is not necessarily incorrect and is
appropriately prevalent amongst scientists and nonscientists, who often
make inferences about likely causality based on a combination of correlated
variables and a strong theory of mechanism to explain a causal link
(Koslowski, 1996; Murphy & Medin, 1985; Shaklee & Elek, 1988). Even
nonscientists are more likely to believe that two correlated variables are
causally related when there is a plausible mechanism (Koslowski, 1996).
In fact, people are very likely to seek out information about possible
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mechanisms when asked to draw conclusions about causality (Ahn, Kalish,
Medin, & Gelman, 1995). Furthermore, people are more likely to believe
causal theories when they were able to integrate multiple pieces of evidence
into a coherent framework and less likely to believe them when some of the
evidence could not be explained by that framework (e.g., Koslowski,
Marasia, Chelenza, & Dublin, 2008). Adults also take into account other
information, such as temporal or physical contiguity, amount of data/sample
size and other factors in evaluating explanations for evidence (Ahn & Kalish,
2000; Ahn et al., 1995; Koslowski et al., 2008). People are also sensitive to
the existence of alternative explanations (Sloman, 1994) and to the coher-
ence of explanations (Lien & Cheng, 2000). Young children, on the other
hand, seem unable to incorporate both covariation and plausible
mechanisms in judgments of likely causality. For example, sixth graders in
one study were insensitive to the existence or nonexistence of a causal
mechanism and primarily made causality judgments based on covariation
(Koslowski, Okagaki, Lorenz, & Umbach, 1989).

Scientists recognize that the inference of causation based on covariation
plus a mechanistic model is not solid proof and that covariation data leave
open alternative explanations. Unfortunately, for many everyday contexts
individuals can easily identify potential mechanisms for many relationships
and thus may readily accept causal models of correlational data even though
the presumed mechanisms have little validity or are merely assumed. In
other words,
because explanations embody prior beliefs, they have an undisputed danger:
when generated from true beliefs, explanations provide an invaluable source of
constraint; when generated from false beliefs, explanations can perpetuate
inaccuracy.

Lombrozo (2006, p. 466)
Consider, for example, the assertion that “people who regularly attend
religious services are healthier and live longer than people who do not attend
religious services, perhaps because of the social support people receive from
attending church.” When asked to generate “alternative” explanations for
these types of descriptions, we found that individuals tend to identify
additional causal mechanisms that are consistent with the framing of the asser-
tion (e.g., “and also maybe people have more meaning in life leading to moti-
vation to be healthy”) or experiences that are consistent with the mechanism
proposed (e.g., “my mother goes to church, and when she’s sick people bring
her casseroles”; Durante, 2015). Unfortunately, individuals rarely generate
mechanisms for other causal patterns despite explicit instructions to do so
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(e.g., “healthier people are more likely to be able to attend religious services
regularly” or “people who are conscientious are more likely to attend reli-
gious services regularly as well as maintain good health habits”). One reason
everyday scientific reasoning may be especially difficult is that causal mecha-
nisms are easy to generate for familiar contexts (Ahn & Kalish, 2000), and
once individuals generate an explanation, they are more likely to believe a
claim (Glassner et al., 2005). Furthermore, the combination of a model and
a causal mechanism can lead to a false sense of understanding or “illusion of
explanatory depth” (Rozenblit & Keil, 2002).

In several studies, we have found that adult college students rarely notice
when people inaccurately assume causality from correlational data (Burrage,
2008; Rodriguez, Ng, et al., 2016; Rodriguez, Rhodes, et al., 2016). In
one study, participants read a fictional article that contained correlation/
causation errors such as “.experimenters found a positive relationship
between achievement motivation and job status. This study showed that
people stayed in low status positions because they lacked the personal
motivation to achieve.”. They rated studies that contained such errors
as identical in quality to studies that had no causal interpretation error
(Rodriguez, Ng, et al., 2016; Rodriguez, Rhodes, et al., 2016). Even
when explicitly asked to critically evaluate such evidence, Burrage (2008)
found that University of Michigan college students noted problems
regarding causal inference less than 15% of the time.

2.1.2 Control of Variables
Another threat to internal validity is the existence of uncontrolled explana-
tory variables (Popper, 1959). It is critical for people to consider whether
experimental variables have been adequately controlled when evaluating
scientific studies. The core concept of controlling variables is that a causal
claim is only valid if a single contrast has been made between two experi-
mental conditions. The control of variables strategy is considered a
domain-general skill that relies on both the ability to create unconfounded
experiments and the ability to distinguish between confounded and uncon-
founded experiments (Chen & Klahr, 1999). Furthermore, people should
use the control of variables strategy when making inferences about an
experiment; for instance, they should be able to recognize the limitations
of causal claims from a confounded experiment. However, people rarely
take into account whether experimental variables have been accurately
controlled when evaluating evidence; even though they can do so when
their prior knowledge supports the alternative interpretation, and this is
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particularly true for young children. In one study, even after 20 sessions of
exploring the effects of multiple variables on different outcomes, adults
made fewer than 75% valid causal inferences, and children made fewer
than 25% valid causal inferences (Kuhn et al., 1995). There is some evidence
that young children can improve their ability to use the control of variables
strategy, but only after extensive training that includes both explicit instruc-
tion and probe questions (Chen & Klahr, 1999; Klahr & Nigam, 2004;
Schwichow, Croker, Zimmerman, H€offler, & H€artig, 2016).
2.1.3 Selection Bias
Selection bias is closely related to the control of variables, but focuses on the
assignment of individuals to condition. Consider the following vignette,
variations of which we have used in different studies (e.g., Rhodes et al.,
2014; Rhodes & Shah, 2016a, 2016b)
New research is shedding light on whether meditating is effective for improving
academic performance. In a recent study conducted in a large classroom, students
volunteered to be part of a meditation group or a control group. Participants in
the meditation group were instructed to meditate for 30 minutes every day for
three months. Forty percent of the class volunteered to be in this group. The
control group was required to avoid meditating during this time period.
Researchers found that students in the meditation group showed a greater in-
crease in their academic performance at the end of the semester than the control
group. Researchers concluded that meditation can improve academic
performance.
Because participants self-selected to be in either the meditation group
or the control group, it cannot be determined if differences in those two
groups are due to the meditation manipulation or preexisting differences
that lead them to select a particular condition. As a result, the evidence
here does not adequately support the idea that meditation helps students
study. Across numerous studies, even when asked to critically evaluate or
generate alternative explanations for data, University of Michigan students
and adults explicitly note these errors only about half the time (e.g.
Burrage, 2008). Although our studies suggest that individuals are actually
better at noticing selection bias than other errors, it is clear that there is
room for improvement.
2.1.4 Other Threats to Internal Validity
There are numerous additional threats to internal validity; however, we have
not collected data on the ability of laypersons to identify these threats, and so
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we describe these in less detail. They include changes in a dependent variable
as a function of development or time rather than as a function of an inter-
vention. For example, in a cognitive training study, children might improve
more from pretest to posttest on an outcome variable because they are older
rather than because of the cognitive training intervention per se. Another
threat to internal validity is repeated testing or measurement being respon-
sible for change rather than an intervention. Experimenter and (in human
studies) participant expectations may also pose threats to validity, especially
when there is subjectivity in reporting. And other factors can also reduce
confidence that an independent variable was responsible for an effect on a
dependent variable, such as a historical event (e.g., it rained on the day
the control group was tested). It is often impossible to discern whether or
not some of these factors played a role in a study; for example, unless the
experimenter had a suspicion that something like the rain made a difference,
she may not even mention that it rained.

In summary, people rarely notice threats to internal validity when they
are present (except selection bias, which is noticed nearly half the time,
and even more in some of our studies depending on the context). Perhaps
more disturbing is that many studies with other kinds of threats to validity
are lauded as being of high quality; Hurley (2016) in his New Yorker article,
for example, describes the study in question as boasting “excellent bona
fides” in part because it is an RCT. By noting that a study does not contain
the most salient threat to validity (and thus legitimizes it), a science writer
might inadvertently suggest a more general positive evaluation of the study,
even if it is not warranted.
2.2 Threats to Construct Validity
A threat to construct validity refers to whether the constructs being measured
are appropriate. Another common flaw is when a claim is based on data
in which the measurement of one or more variables is invalid or unreliable
(Picardi & Masick, 2013). For example, a study might claim to measure
creativity but uses a single self-reported question “Are you creative?”
Critically evaluating evidence involves evaluating the quality of the variables
and measurement. In general, people rarely attend to this issue. For example,
Burrage (2008) included two vignettes that were written with no informa-
tion regarding how key variables were defined. One vignette read:
One in four adolescents said they were abused within the past year, according to a
new survey. The telephone survey of 2,000 children ages 10 to 16, suggests, “We’re
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not doing a very good job of counting and tracking the problem,” said David Fin-
kelhor, a sociologist at the University of New Hampshire and coauthor of the
study.
In this case, the word “abuse” is not defined in any way, so it should be
difficult to draw conclusions from this study. However, fewer than 20% of
participants mentioned the unclear definition when asked to critically
evaluate the vignettes. One of our critiques of the Roberts et al. (2016) paper
about working memory interventions in children was the test used to
measure academic achievement (Katz & Shah, 2016a, 2016b), which we
argued may not necessarily show benefits of working memory training.
This example points to the fact that expertize may be required to recognize
threats to construct validity. However, one study in Burrage (2008), in
which she asked graduate students in several disciplines to describe psycho-
logical data in graphs, found a somewhat contradictory effect; graduate
students who were not familiar with psychology (specifically, history and
engineering graduate students) were often more concerned with measure-
ment of psychological constructs such as “creativity” than psychology
graduate students who were more likely to trust that the construct was
measured appropriately. One possibility is that the graduate students in
our study, knowing that these constructs are often measured well, trusted
the fictional “researchers” who generated the graphs (only a very brief study
description was provided and participants were told that the data were
fictional). In the case of the working memory training study, however,
we read the entire paper and were highly familiar with the tests used to
measure academic outcomes. These contradictory data suggest, however,
that a little familiarity but not substantial expertise might lead to a false sense
of understanding.

2.3 Threats to Statistical Validity
Another aspect of science evidence evaluation is understanding something
about the statistical properties of the evidence and whether or not the statis-
tical conclusions are valid. In the threat to internal and external validity
examples aforementioned, the results are implied to be statistically significant
and there is minimal discussion of possible problems with sample size,
variance and so forth. However, it is also possible that the statistical infer-
ences are not correct (Beaudry & Miller, 2016; Cook, Campbell, & Day,
1979). Beaudry and Miller (2016) describe three types of statistical validity
concerns: (1) conducting multiple analyses until statistical significance is
found, (2) using unreliable measures and (3) not having a large enough or
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representative sample. Scientists themselves often fall prey to the first
statistical validity concern, conducting multiple analyses until statistical
significance is found. Although in experimental sciences there is currently
a greater awareness of such issues, very few studies as yet follow recommen-
ded procedures (such as preregistration of hypotheses and methods).
Furthermore, it might actually be informative, for exploratory purposes,
to test multiple posthoc hypotheses. However, it is important to keep in
mind that those exploratory analyses must be replicated with studies
designed explicitly to test these hypotheses. This is one possible concern
with the brain training/dementia study reported here; though the sample
size is large and there was random assignment, there have been numerous
hypotheses tested and published for over a decade (e.g., Ball et al., 2002).
These papers ought to be peer reviewed and, if appropriate, published,
but it may be too early to report these findings to the general public,
even if the results are deemed “preliminary”. As we discuss below, people
(students at least) rarely pay attention to “hedging” in reports of science
evidence.

2.4 Threats to External Validity
Another type of error in drawing conclusions from scientific experiments is a
threat to external validitydto what extent are the results meaningful in the
real world, and will they apply in different contexts?

Overgeneralizing relevance of a conclusion to other related contexts or
situations comprises one type of external validity error. A study of the
effectiveness of physical exercise for diabetes patients, for example, will often
involve a certain kind of exercise (like treadmill walking or yoga), a specific
dosage (twice a week for six months), participants with some range of
characteristics (low SES sedentary adults with Type 2 diabetes) and be
conducted in a particular environment (the local YMCA). It is not clear
whether or not the results are applicable to other kinds of exercise, dosages,
participants or environments. Though we have not systematically coded our
participants’ responses to assess whether they ever mention these external
validity issues, it is clear that such comments are generally rare. In the case
of the Roberts et al. (2016) and other studies that find that cognitive training
is or is not effective, it is always important to consider the potential breadth
of transfer (for example, is it just Cogmed that is not effective, or all working
memory interventions?). Part of the answer is dependent on results of other
studies of cognitive training. The evaluation of threats to external validity,
then, is also heavily dependent on prior content knowledge and also
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understanding that claims from single studies are not themselves conclusive
unless replicable.

Another external validity error occurs when effect sizes are small even
when based on a large sample; thus, although the results may be statistically
significant, making changes based on the finding are not warranted because
their impact will be small and doing so may be extremely costly (Domhoff &
Schneider, 1999; Rosenthal, Rosnow, & Rubin, 2000). Burrage (2008)
found that students rarely commented on very tiny effect sizes for which
large and costly societal changes were proposed. The overgeneralization
of small effect sizes is not the same as statistical validity, because the statistical
evidence is not in dispute; rather, it involves the interpretation or application
of the statistical evidence. One common approach to exaggerating effect
sizes in science communication is to report effects of intervention in terms
of proportion change (Baron, 1997). For example, in the Hurley (2016)
New Yorker article, a primary statistic that is provided is a 48% reduction
in risk (a change from 12.1% to 8.2%, also reported in the article) but people
tend to consider a “48% reduction” as a bigger change than 12.1% to 8.2%
(Baron, 1997). Many media reports (e.g., this article in theWall Street Journal
http://www.wsj.com/articles/this-brain-exercise-puts-off-dementia-1469
469493) only refer to the 48% figure. Presenting risk reductions graphically
also leads to people increasing their assessment of the importance of those
risks (for better or worse; Chua, Yates, & Shah, 2006; Stone et al., 2003;
Stone, Yates, & Parker, 1997)

A related error, that we have called “number absolutism”, occurs when a
specific numerical data point is believed to represent more precision than is
possible (e.g., more than three cups a day of “ichemas tea” increases cancer
risk, or a temperature of 100.3 degrees F or higher indicates risk of
pneumonia) (Pan & Shah, 2016). Individuals who do not consider variance
and measurement error are likely to make decisions that are overly reliant
on specific numbers (e.g., deciding that drinking precisely 2.99 cups of iche-
mas tea is okay, assuming a patient must not have pneumonia because their
temperature is just 100.2). In preliminary studies, we asked workers on
mechanical turk to answer questions about numerical differences (paraphrased
for brevity) such as “John scored a 97 on a math test, and Bob scored a 96;
what is the likelihood that John is better at math than Bob”; or,
“A physician prescribed 2½ pills but the patient took 2⅔; what is the likeli-
hood that she suffered from symptoms of overdose?” We found that there
were individual differences in “number absolutist” attitudes such that people
who focused on specific numbers and ignored variance were more likely to

http://www.wsj.com/articles/this-brain-exercise-puts-off-dementia-1469469493
http://www.wsj.com/articles/this-brain-exercise-puts-off-dementia-1469469493
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do so in other contexts (though there was some separability of items that
involved comparisons between two numbers as in the John versus Bob
example and comparisons between a measurement and a referent as in the
pill example). Taking specific numbers too seriously in contexts with a
referent was associated with decisions participants reported they might make
(e.g., paying a dollar more for a small bag of potato chips with five fewer
calories if they were on a diet). Fortunately, a brief intervention in which
participants were asked to consider issues of variance and measurement error
(e.g., answering questions like “what is the likelihood that if Bob took the test
again tomorrow, he’d have the same score?”) led not only to improvements
on transfer absolutism items, but also on a standardized test of numeracy.

Above, we characterize good science evidence evaluation in terms of the
ability to identify threats to scientific validity and point to several studies that
suggest that, though individuals are often capable of identifying threats to
validity they frequently ignore these threats in everyday contexts. Much
of the research base focuses on people’s ability to understand and recognize
threats to internal validity, whereas we were able to find much less research
that focuses on people’s attention to external validity concerns. In the next
sections, we discuss why readers of scientific evidence often fail to detect
threats to scientific validity, the factors that affect whether or not they detect
these threats, and potential methods to increase people’s ability to do so.

3. HEURISTIC (SYSTEM 1) THINKING VERSUS
ANALYTIC (SYSTEM 2) THINKING
Why do readers of scientific evidence fail to detect threats to validity?
One proposal is that people rely on heuristic thinking (or “System 1”) rather
than analytic thinking (“System 2”) in the context of evidence evaluation
(Amsel et al., 2008). Heuristic thinking is fast, frugal, automatic,
emotional and unconscious (Kahneman, 2011); when costs of error are
low and correction is easy, saving effort through heuristic thinking is
appropriate. Analytic, or System 2 thinking, requires much slower, substan-
tial effort, and due to limited cognitive resources, it occurs less frequently.
Relying on heuristic thinking can lead people to “speed” through process-
ing and make errors in reasoning. However, when people reason analyti-
cally, they are more likely to identify threats to scientific validity.
Unfortunately, k-12 students, college students and the laypublic all tend
to rely on heuristic thinking when reading media articles about scientific
studies (e.g., Norris & Phillips, 1994). For example, when Rodriguez,
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Ng, et al. (2016) and Rodriguez, Rhodes, et al. (2016) asked college students
to discuss scientific evidence about everyday topics, thinking analytically was
uncommon, and most participants discussed personal opinions and experi-
ences. When explicitly asked to critically evaluate scientific evidence, they
did so more frequently. In a similar study (Kosonen &Winne, 1995), college
students performed no better than 7th or 10th grade students when asked to
evaluate the validity of an experimental study. It was only when the re-
searchers explicitly prompted college students to think critically that they
became better at evaluating experiments compared to middle and high
school students. In other words, people often have the capability of analyt-
ically evaluating evidence, but do not typically do so without explicit in-
struction. Rather, they rely on a set of heuristics, outlined below, that
often lead to reasoning errors.

3.1 Appeal to Authority
When people do not have sufficient background knowledge about scientific
issues, they may judge scientific claims in part by deferring to scientific
authority (Bromme & Goldman, 2014). For instance, Brossard and Nisbet
(2007) found that trust in scientific authority was the strongest predictor
of support for agricultural biotechnology, stronger even than knowledge
about the science behind the issue. In particular, schools in the United States
emphasize the objectivity and neutrality of science, which may further
promote the authoritative status of scientists (Brossard & Nisbet, 2007).
Although it is good for students to trust scientists in general, deference to
scientific authority can lead to an oversimplified view of the scientific
process. For instance, not understanding that novel findings are tentative
and that scientific experts often disagree about tentative findings. Addition-
ally, because it is heuristic, people may rely on deference to authority as a
way to avoid analytical thinking, particularly when a description of a study
is perceived as difficult to comprehend (Scharrer, Bromme, Britt, & Stadtler,
2012).

3.2 Bias Towards Certainty
In another example, both high school students (Norris & Phillips, 1994) and
college students (Norris et al., 2003) overestimated the certainty of findings
from science news reports and were biased to interpret statements from the
reports as true versus false. Students from both studies found it particularly
difficult to interpret hedging statements, such as “X is likely to be true”,
“uncertain of the truth status of X” or “X is unlikely to be true”. The
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authors speculated that students overestimated the certainty of scientific
findings for several reasons. First, people are generally biased to seek out cer-
tainty/avoid uncertainty; thus, students may have perceived nuanced state-
ments as more certain than they really were to feel a sense of closure,
resolution, etc. Second, textbooks typically present scientific information
in black and white terms and with a limited historical context, perhaps giv-
ing the impression that science is itself black and white.

3.3 Relying on Fluency
In addition to overestimating the certainty of findings from scientific news
articles, students also overestimated their own understanding of the studies
(e.g., Norris et al., 2003). In general, people tend to equate the comprehen-
sion difficulty of a text with their ability to recognize the words in the text
(Pressley & Wharton-McDonald, 1997). Because the articles used in the
Norris and Phillips (1994) and Norris et al. (2003) studies were written in
layman’s terms using simple wording, students may have underestimated
the complexity of the studies described in the articles. Additionally, despite
experiencing difficulty interpreting the studies, students were very good at
locating relevant information from the article. Due to the high readability
and ease of finding specific text in the articles, students may have been overly
confident in their ability to understand the articles. Thus, overconfidence in
one’s ability to comprehend a scientific news report may reduce critical
thinking.

3.4 Avoiding Conflicting Information
Many journal articles present science news in an oversimplified, black and
white manner; for instance, they may only promote one viewpoint or
finding. Thus, students may not consider alternative explanations for
findings because conflicting information is either not available or must be
integrated across multiple sources (Bromme & Goldman, 2014; Stadtler,
Scharrer, Brummernhenrich, & Bromme, 2013). However, evidence sug-
gests that students are more likely to critically evaluate scientific evidence
and generate explanations for phenomena when they process conflicting in-
formation at a deep level (Mason, 2000; Stadtler et al., 2013). For instance,
Mason (2000) found that middle school students who acknowledged and
understood a piece of information that conflicted with their belief in a
school-taught theory (e.g., that dinosaur extinction was caused by a collision
between Earth and an asteroid) were more likely to accept an alternative
theory or decrease their belief in the original theory.
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3.5 Reasoning From Prior Experience and Gut Feelings
Finally, people’s prior experience and emotional response to content also
influence their evaluations of evidence; when evidence “feels right” (often
when it is belief congruent) or makes one feel good (because it is what
people desire), they are likely to judge the evidence as being of high quality
without further consideration. This issue is discussed further in the section
below on the content and communication of evidence.

In summary, one reason that people tend to ignore threats to scientific
validity is that they rely on relatively low-effort heuristic strategies. Below,
we discuss the conditions under which individuals are more or less likely to
rely on heuristic versus analytic processes when evaluating science evidence.

4. CONTENT AND COMMUNICATION OF EVIDENCE

The type of information presented as well as the way in which
evidence is presented has an impact on evidence evaluation. Below, we
outline several factors that influence people’s reasoning.

4.1 Belief Consistency
When individuals are faced with evidence that is incongruent with their
existing beliefs, they are more likely to activate an analytic mode of thinking
than when information is congruent with their beliefs (D. Evans, 2003;
J.S.B.T. Evans, 2003; Evans & Curtis-Holmes, 2005; Klaczynski, 2000;
Kunda, 1990; S�a et al., 1999; Sinatra et al., 2014; see Nickerson, 1998 for
an early review). This phenomenon was demonstrated in a classic study
by Lord et al. (1979). Participants were asked to evaluate empirical studies
about controversial topics that were consistent or inconsistent with their
personal beliefs. For example, some participants read a report summarizing
a study about the effectiveness of the death penalty. In one report, the
empirical finding described was that in 11 out of 14 states with capital pun-
ishment, murder rates dropped between the year that it was adopted and the
year following. People who supported capital punishment tended to rate
that study as being of high quality, whereas people who were against capital
punishment were far more critical of the findings, and were more likely to
generate alternative explanations for the data. People tend to use more so-
phisticated reasoning strategies (Ditto & Lopez, 1992), appropriate statistical
principles such as base rates, and the law of large numbers (Ginossar &
Trope, 1987; Sanitioso & Kunda, 1991) when they have a desire to disprove
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a claim. Returning to the issue of brain training, it is virtually certain that the
first author’s personal hope for at least some kind of cognitive training inter-
vention to be effective for the many populations who might benefit (aging
adults, ADHD children, brain-injured individuals, fighter pilots who need
to stay sharp) affects his/her evaluation of studies with negative outcomes
with more scrutiny than those with positive outcomes.

4.2 Presence of Anecdotes
In general, people tend to pay more attention to anecdotal information
compared to statistical information in the context of decision making
(Betsch, Ulsh€ofer, Renkewitz, & Betsch, 2011; Fagerlin, Wang, & Ubel,
2005; Sanders Thompson, 2013; Slater & Rouner, 1996; Ubel, Jepson, &
Baron, 2001). For example, individuals are more likely to select classes based
on the recommendation of an individual face-to-face encounter than based
on a representative sample of student ratings (Borgida & Nisbett, 1977).
Likewise, women who watched narrative videos reported fewer barriers
to mammography than women who watched didactic informational videos
(Kreuter et al., 2010). In a recent study, Rodriguez, Ng, et al. (2016) and
Rodriguez, Rhodes, et al. (2016) addressed the extent to which anecdotal
information affected evaluations of scientific evidence. Across two studies,
college students read and evaluated a set of fictional scientific news articles.
These articles provided summaries of research studies in psychology.
However, all of the articles made unwarranted interpretations of the
evidence, such as making strong conclusions from weak evidence or
implying causality from correlational results. Students were randomly
assigned to the anecdote or control conditions. For the anecdote condition,
each news article contained personal narrative that corroborated the results
of the research study. The control condition news articles only contained the
summaries of the research studies (Study 1) or a descriptive text alongside
these summaries (Study 2). Even after controlling for important variables,
such as level of college training, knowledge of scientific concepts and prior
beliefs, the presence of anecdotal stories significantly decreased students’
ability to provide scientific evaluation of the studies.

4.3 Microlevel Evidence
Readers interested in the social and behavioral sciences have likely noticed
that over the past two decades, there has been a steady increase in the
number of news headlines that feature neuroimaging results. This increase
not only reflects the growth of fields like cognitive neuroscience, but also
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suggests that neuroscience information may be appealing to readers. To test
this hypothesis, researchers have examined how the presence of neurosci-
ence information in a behavioral science report influences scientific
evaluations. When neuroscience is mentioned in an explanation or study
description, people tend to rate the explanation/description as being higher
in quality (Beck, 2010; Fernandez-Duque et al., 2015; McCabe & Castel,
2008; Weisberg et al., 2008). Reports that include neuroimaging evidence
often include brain pictures as well, perhaps showing results of fMRI
analyses, which could also have an effect on scientific evaluations. However,
researchers have found that the presence of brain images alone does not seem
to have a strong effect on reasoning (Farah & Hook, 2013; Hook & Farah,
2013); rather, textual neuroscience information appears to be most influen-
tial. One reason this may be the case is that textual neuroscience information
is often incorporated into the explanation of a phenomenon and may appear
to provide stronger support for a claim. The catch, however, is that
researchers find that irrelevant neuroscience information, which has no
bearing on the study being described, also improves ratings of explanations
and study quality (Weisberg et al., 2008). In this way, neuroscience informa-
tion can have a “seductive” appeal, such that people will judge studies
containing neuroscience information more favorably regardless of whether
they actually understand it.

In recent studies we extended findings associated with the influence of
neuroscience on evidence evaluation by taking into account people’s prior
beliefs about the claims. Adult participants, recruited via Amazon’s Mechan-
ical Turk (N ¼ 400), were first asked to indicate whether they believed that
listening to music while studying was beneficial. Next, they read a fictional
news article describing a research study that found positive effects of listening
to music while studying. All participants read some introductory text fol-
lowed by a study description, and the introductory text was manipulated
to either contain neuroscience information or not. For half of the partici-
pants, the news article began with the following neuroscience text: “Years
of neuroscience research have made it clear that listening to music is associ-
ated with distinct neural processes. Functional MRI scans reveal that
listening to music engages cortical areas involved in music and sound
perception, and this activation is thought to be present even while doing
other tasks, such as studying or learning new information”. For the other
half of the participants, the introductory text contained the same number
of words but no neuroscience: “Although some people prefer to work in
silence, many people opt to listen to music while working or studying. In
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fact, due to the increased mobile access to music, a brief glimpse into a library
or coffee shop will reveal dozens of individuals poring over their laptops and
books with earphones wedged into their ears”. Following the introductory
text, a research study was described that contained a methodological flaw;
specifically, participants in the study had self- selected the condition (music
listening or no music) they were to be in, so the study was not properly
controlled and contained a “sampling bias” threat to validity.

Overall, participants rated their understanding of the mechanisms under-
lying the music phenomenon higher in the neuroscience condition than in
the control condition, despite the fact that the neuroscience information did
not actually provide any concrete underlying mechanisms for the effect of
music on study performance. Furthermore, participants also rated the article
as being of higher quality when the neuroscience information was present, at
least when participants had neutral prior beliefs.

Recent research suggests that neuroscience is not alone in its seductive
qualities. People seem to be attracted to genetic explanations for phenom-
enon over cultural or behavioral explanations (Dar-Nimrod & Heine,
2011). People also demonstrate a preference for data when they are
presented in graphic form or when there are meaningless chemical formulas
(Tal & Wansink, 2016). People tend to evaluate studies that contain mean-
ingless mathematics equations in abstracts as being of higher quality than
when the same abstract is not accompanied with a mathematical formula
(Eriksson, 2012). One explanation for these findings could be that neurosci-
ence information, genetic information, chemical formulas and mathematical
equations are all consistent with our representations of “science”, and so the
presence of these things may inspire more faith in the results. Another
possibility could be that, when judging explanation quality, the more reduc-
tive the explanation is, the more explanatory it appears. Hopkins et al.
(2016) demonstrated that, across a range of phenomena from a variety of
science domainsdincluding social science, psychology, neuroscience,
biology, chemistry and physicsdpeople preferred reductive explanations,
regardless of whether those explanations were logically relevant to the
phenomena being described.

In a recent study (Rhodes, 2015; Rhodes & Shah, 2016b), we further
examined the extent to which people prefer reductionist, microlevel
explanations for data more generally compared to more holistic, macrolevel
explanations. Specifically, we examined whether the influence of reduc-
tionist information depends on the level of causal information provided.
Participants were asked to read a series of brief study descriptions from a
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range of sciences and rate how supported the conclusion was. Participants
(n ¼ 330) were in one of three conditions, (1) Evidence Only, in which
no causal explanation was given, (2) Explanation Only, in which a causal
explanation was provided in the explanation but lacked supporting
evidence or (3) Evidence and Explanation, in which the causal chain for a
phenomenon was explicitly spelled out through the evidence and explana-
tion provided (An example of each of these conditions can be seen in Fig. 1).

We asked all participants to compare two sets of studiesdthose that
contained microlevel evidence versus those that contained macrolevel
evidence (e.g., tea decreases anxiety and in turn decreases cold symptoms)
versus microlevel evidence (e.g., tea decreases cortisol and in turn decreases
cold symptoms). We found that participants tended to prefer microlevel ev-
idence over macrolevel evidence. Importantly, this effect was pronounced
when the sample contained human participants and there was only an
implicit mechanism. These results suggest that reductionist information
Figure 1 Mechanistic manipulations for example research scenario. Location of
mechanistic information (microlevel vs. macrolevel) in each condition is bolded and
italicized. From Rhodes, R. E. (2015). The influence of reductionist information on
perceptions of scientific validity (Doctoral dissertation). Ann Arbor, MI: University of
Michigan.
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may be most likely to influence scientific reasoning when there is a lack of
other causal information available. An example of such a situation is news-
paper headlines which, due to space constraints and the goal of attracting
readers, typically highlight a surprising finding with no causal explanation.
In these cases, people may be at higher risk for being “seduced” by reduc-
tionist details, regardless of their relevance or logical relation to the study
being reported.

4.4 Presence of Graphics
In addition to the influence of neuroscience information, our group has
evidence to suggest that the mere presence of a data visualization (i.e., scat-
terplot) can shape the conclusions people draw from scientific information
(Ibrahim, Seifert, Adar, & Shah, 2016). Based on decades of research, the
World Health Organization (WHO) has deemed GMOs as safe for human
consumption; however as mentioned earlier, a large proportion of the public
still dispute this claim. A total of 186 adult participants, recruited through
Amazon’s Mechanical Turk, were presented with a fictional popular science
article that discussed the research on the safety of GMOs. Participants
reported their previous beliefs on the safety of GMOs before being
presented with any materials. Participants were randomly presented with
one of two visualization conditions (scatterplot or no scatterplot) and one
of two text conditions (consistent versus inconsistent evidence). In the
consistent evidence text, participants were informed of the decades of
research and the WHO designation of GMOs as safe then presented with
the results of one fictional study that found no correlation between GMO
consumption and annual doctor visits. In the inconsistent evidence text,
participants were first informed of the safety of GMOs in the same manner
as stated in the consistent text condition, but in this condition the fictional
study found a positive correlation between GMO consumption and annual
doctor visits (that is the greater the GMO consumption, the higher
incidence of doctor visits per year). For those presented with the inconsistent
evidence text, we found those presented with a data visualization were more
likely to make causal inferences based on the results of the new fictional study
than those who were not presented with a data visualization. To elaborate,
participants presented with mixed evidence and an associated data visualization
were more likely to ignore the previous wealth of evidence deeming
GMOs as safe, and more likely to make a causal inference based on the
one fictional study presented (i.e., that GMO consumption causes illness).
In addition, those whose previous beliefs were that “GMOs are unsafe”
made more causal inferences between GMOs and health than those whose
previous beliefs were either “neutral” or “GMOs are safe”. Regardless of the
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influence of previous beliefs, the presentation of a data visualization affected
all three groups in a similar manner (leading to more causal inferences in the
inconsistent evidence text and data visualization condition). These results
demonstrate that the presentation of a visualization can easily influence in-
dividuals to ignore past evidence and rely on new evidence under this
circumstance. It is likely that the presentation of the visualization, adds cred-
ibility to the results of the new study, especially if individuals are relying on
System 1 thinking. This pattern of results is especially worrisome since it
demonstrates how easily people can be convinced by new data, regardless
of the actual scientific merit of the result. Our findings also support findings
of previous research mentioned earlier that has demonstrated a similar effect
of bar graphs (Tal & Wansink, 2016), scientific formulas (Tal & Wansink,
2016), and neuroscience information (Rhodes et al., 2014).

As the discussion above suggests, several features of how science evidence
is presented in the media affect whether or not individuals are able to
provide high quality evidence evaluations. In addition to the characteristics
of media articles, characteristics of the reader also influence evidence evalu-
ation. These factors are discussed in the next section.

5. INDIVIDUAL DIFFERENCES

Several individual difference factors are associated with evidence
evaluation skills. Note that these are primarily dispositional, and that
everyday evidence evaluation is less related to cognitive abilities (i.e., IQ)
than these dispositional factors. Furthermore, while any individual evidence
evaluation task is influenced by domain specific knowledge, domain general
factors do seem to play a role across a wide variety of circumstances as well.

5.1 Cognitive Flexibility
Although prior beliefs tend to affect the depth of reasoning one uses to
evaluate evidence, they do not affect everyone. Some individuals are very
good at reasoning in a more objective way, independent of their own
personal beliefs. The tendency to do this can be measured by the AOT scale
(Stanovich & West, 1997). This 41-item scale asks about people’s ability to
think flexibly and be open to new information, regardless of what they
personally believe. A high score on the AOT scale reflects more sophisti-
cated thinking dispositions; specifically, it indicates a motivation to have
accurate beliefs, even if that means changing one’s current beliefs. Although
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AOT performance is correlated with cognitive ability, the two constructs are
separable; performance on the AOT predicts data-driven thinking during
argument evaluation tasks, even after partialling out the variance associated
with cognitive ability (Stanovich & West, 1997). People who score highly
on the AOT scale are more likely to reason in a data-driven, as opposed
to a belief-driven way (Stanovich & West, 1997).

5.2 Cognitive Reflection
The cognitive reflection test (CRT; Frederick, 2005) is a widely used measure
of one’s ability to suppress an intuitive response, resulting from heuristic pro-
cessing, in favor of a more deliberate response. This test consists of three items
that tend to elicit automatic, but incorrect answers. The correct answer re-
quires more thinking than it initially seems. The CRT is correlated both
with cognitive ability (Frederick, 2005; Toplak, West, & Stanovich, 2011)
and rational thinking measures, such as syllogistic reasoning problems (Toplak
et al., 2011). CRT performance also predicts performance on many heuristics
and biases tasks (Cokely & Kelley, 2009; Frederick, 2005; Toplak et al., 2011).
Most importantly, Toplak et al. (2011) found that the CRT predicts rational
thinking and performance on heuristics and biases tasks after partialling out the
variance associated with assessments of intelligence, thinking dispositions, ex-
ecutive functions and cognitive skills. Thus, people who score highly on the
CRT can be categorized as people who are more likely to engage in rational,
analytic thinking. Participants who score higher on the CRT are less likely to
be religious or believe in paranormal phenomena (Pennycook, Cheyne, Seli,
Koehler, & Fugelsang, 2012).

5.3 Need for Cognition
NFC (Cacioppo & Petty, 1982) is defined as a disposition towards thinking;
people high in NFC report enjoying difficult or effortful cognitive activities.
NFC is measured by an 18-item scale, a sample item is “I would prefer a task
that is intellectual, difficult, and important to one that is somewhat impor-
tant but does not require much thought”. NFC is associated with deliberate
thinking and more effortful higher quality evaluations of evidence. In a
recent study (Minahan & Siedlecki, 2016), for example, individuals who
were low in NFC were less able to notice circular scientific explanations.

5.4 Faith in Intuition
The work on faith in intuition finds that some individuals are more willing
to trust their hunches or intuitions than others (Epstein, Pacini, Denes-Raj,
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& Heier, 1996). Faith in intuition is typically measured via a 15-item survey
with questions such as “I hardly ever go wrong when I listen to my deepest
feelings to find an answer” or “Using logic usually works well for me in
figuring out problems in my life”. Faith in intuition is associated with
heuristic rather than statistical judgments on quantitative judgment tasks
(Shiloh, Salton, & Sharabi, 2002).

5.5 Epistemic Beliefs
Epistemic beliefs refer to people’s knowledge about knowledge: what do
you know about the world, what are good sources of information about
the world and how certain do you feel about what you know (Hofer &
Pintrich, 1997; King & Kitchener, 1994; Sandoval, 2005; Schraw,
Bendixen, Dunkle, Hofer, & Pintrich, 2002). People with sophisticated
epistemic beliefs have an attitude in which they try to ensure that their
beliefs and values represent an accurate reflection of what is known about
the world (Baron, 2008; Stanovich, 2009; Stanovich & Stanovich, 2010).
Thus, individuals with sophisticated epistemic beliefs tend to be more critical
about scientific evidence (Bromme & Goldman, 2014). A commonly used
scale for measuring epistemic beliefs is the Epistemic Beliefs Inventory
(Schraw et al., 2002). It includes questions that assess the extent to which
individuals defer to authority, belief that there are often complex rather
than simple answers to questions and so forth.

5.6 Numeracy and Statistical Reasoning Skills
Numeracy or statistical literacy refers to the ability to understand mathemat-
ical concepts such as probabilities and percentages (and not necessarily being
able to perform computations); statistical reasoning typically involves being
able to reason about statistical concepts such as the law of large numbers or
the effect of outliers. There are several well-known measures of numeracy,
most of which were developed in the context of medical decision making
research. Some common measures include the Berlin Numeracy scale
(Cokely, Galesic, Schulz, Ghazal, & Garcia-Retamero, 2012), a scale devel-
oped by Schwartz, Woloshin, Black, and Welch (1997) which was then
expanded by Lipkus, Samsa, and Rimer (2001). The Subjective Numeracy
Scale developed by Fagerlin et al. (2007) asks individuals about their own
numerical competency. There are also several measures of statistical
reasoning, including the Statistical Reasoning Assessment (Garfield, 2003);
this 20-item assessment measures understanding of basic statistical concepts
like probability, sampling variability, as well as rejection of misconceptions,
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such as about the law of large numbers. The base-rate conflict task trades off
stereotypes and base rates with items like the classic Kahneman and Tversky
“Linda the bank teller” problem (De Neys & Glumicic, 2008). Individuals
with poor statistical reasoning skills may not have a good understanding of
the law of large numbers, the idea that one can be more confident about
observations the larger the sample size (Fong, Krantz, & Nisbett, 1986;
Kahneman & Tversky, 1972; Sedlmeier & Gigerenzer, 1997), or understand
the notions of variability/measurement error/randomness (Garfield, 2003;
Nisbett, Fong, Lehman, & Cheng, 1987).

5.7 Domain Knowledge
Knowledge about the content of a study helps readers evaluate scientific
evidence in a sophisticated manner and, in general, domain-specific factors
have a substantial impact on scientific reasoning (Schunn & Anderson,
1999). No one can be an expert in every scientific topic, but everyone
can at least learn to apply their general skills to evaluate the validity of a
research design and the extent to which conclusions are supported by
evidence (Bromme & Goldman, 2014).

One highlight of this review of individual differences is that most are
dispositional, focusing on people’s flexibility or open-mindedness, their mo-
tivations towards thinking and reflection and their epistemological beliefs; as
with many aspects of human reasoning, general cognitive abilities seem to
not play as big a role as these dispositional factors (Stanovich, 2009).

6. BEYOND HEURISTIC VERSUS ANALYTIC THINKING:
SPECIFIC EVIDENCE EVALUATION SKILLS
Activating analytic thinking and even skepticism may not be adequate
for understanding threats to validity when evaluating scientific evidence in
everyday contexts. When asked to be critical of evidence, college students
tend to provide relatively general “knee-jerk” criticisms that could apply
to virtually any study rather than identifying specific threats to validity.
For example, participants frequently refer to superficial methodological con-
cerns, such as “outliers could also affect the results”, or the sample could be
larger or “more diverse” (Durante, 2015). In fact, the Hurley (2016) article
about dementia and cognitive training discussed earlier includes the very
quote, oft-repeated in undergraduates’ critical evaluations of scientific
evidence, “We need to see it confirmed and replicated in a larger and
more diverse population”. Though these responses require somewhat
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more analysis than noncritiques (e.g., “the results make sense”), they do not
actually involve reference to key threats to validity, and they are often so
generic that they could be applied to virtually any study. What other
factors limit reasoning about evidence?

6.1 Poor Analysis of Covariance Reasoning
One specific skill that people need to develop is referred to by Klaczynski,
Gordon, and Fauth (1997) as “analysis of covariance (ANCOVA)
reasoning”. ANCOVA reasoning involves considering possible third vari-
ables and possible confounds, that might be responsible for a relationship be-
tween two variables. As an example, Klaczynski et al. (1997) write:
Consider now a second person who notes that business professors have generally
higher life satisfaction than history professors, but who also ignores the discrepant
salaries and teaching loads of the two groups and draws the conclusion that busi-
ness is an inherently more enjoyable field than history.
People tend not to notice this reasoning error (Schaller, 1992); however,
they are more likely to notice it when they spend more time thinking about
covariance (Schaller & O’Brien, 1992). ANCOVA reasoning is relevant in
“control of variables” contexts (Klahr & Nigam, 2004), and more generally,
ANCOVA reasoning is associated with generating alternative explanations
for any empirical evidence. As discussed in the section on causation bias
earlier, people have difficulty generating alternative explanations for data
(Durante, 2015).

6.2 Identity-Protective Cognition
Kahan et al. (2013) point out that merely invoking System 2, analytic
thinking does not explain why people often have vastly different interpreta-
tions of evidence. They found that when people were given a belief-neutral
study (about a new skin rash ointment), those with greater numeracy were
better able to evaluate the results of a study (presented in a 2 � 2 contin-
gency table and requiring conversion to percentages). However, when
people were given a politically polarizing study about gun control, greater
numeracy resulted in worse performance. When data were in disagreement
with their beliefs (crime increased with greater gun control for liberals and
disagreement with greater gun control for conservatives) people took advan-
tage of their greater numeracy to essentially “slam” the findings; when the
data were consistent with their beliefs, they were generous. Thus, greater
numeracy resulted in more polarization, a phenomenon they refer to as
“identity-protective cognition”.

This situation probably explains polarization of cognitive science
researchers regarding certain topics, like cognitive training (or, say, the effect
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of bilingual experience on cognitive development). Scientists are even better
able to use their content knowledge and quantitative skills to critically
evaluate some subsets of the studies in a particular field and give a pass to
other studies. Compounding this is that in systematic reviews and even
meta-analysis, studies that are included differ substantially. Katz and Shah
(2016a), for example, compared five reviews and meta-analyses. Though
meta-analyses putatively use “objective” means for identifying studies, small
differences in keywords, or date range, turned out to have a fairly substantial
impact on the studies included in them. Systematic reviews, which do not
often use objective means for collecting studies, include even a more diverse
set of studies. We compared five reviews and meta-analysis as an
example and found that of the 110 total studies that were included in at least
one of the five studies, the numbers of those studies in each analysis were 21,
22, 28, 46 and 55. Not surprisingly, each analysis drew different conclusions
regarding the impact of cognitive training.

7. IMPROVING EVIDENCE EVALUATION

The majority of this paper focuses on characterizing a problem; people
have difficulty evaluating science evidence in everyday contexts. Here, we
discuss some research on improving evidence evaluation. In general, two
approaches are taken to improve evidence evaluation. Debiasing attempts
to improve people’s evaluations of an individual piece of evidence or set
of evidence (e.g., helping people understand that vaccines are safe; Horne,
Powell, Hummel, & Holyoak, 2015), whereas education involves teaching
people strategies for improving evidence evaluation skills more generally.

7.1 Debiasing
When people are initially given misinformation and then that misinforma-
tion is corrected, they do not update their beliefs unless the new information
is consistent with their own prior beliefs. For example, when the erroneous
claim that Iraq possessed weapons of mass destruction was corrected with
new information, only those whose political beliefs were supported by
the new information changed their minds; others became even more
entrenched in their original beliefs (Nyhan & Reifler, 2010). Decision
scientists have thus been very interested in finding out how to convince
people to take into account new evidence and correct misinformation
(Lewandowsky et al., 2012; Schwarz, Newman, & Leach, 2016).

To replace misinformation with new information, it is central that
people can generate alternate causal models (Johnson & Seifert, 1994;
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Seifert, 2002). However, simply asking people to generate alternative expla-
nations on their own is not always an effective technique, because these
alternative explanations are not yet integrated into the causal model and
therefore they are less accessible (Schwarz, Sanna, Skurnik, & Yoon,
2007). In fact, our own work (see causality bias aforementioned) finds
that people are not very good at generating alternative explanations for
data (Durante, 2015). One way to make people consider alternatives is tell
them that others are skeptical of the evidence, or to tell them that the
individual who presented the original evidence is somehow biased (Schul,
1993; Schul, Mayo, & Burnstein, 2008). Another approach that is somewhat
successful is having people go through “challenge interviews” in which they
think out loud as they reason about evidence, leading to better ability to
come up with counterarguments (Prasad et al., 2009). Similarly, asking
people to take the position of a skeptic or opponent and identify arguments
and counterarguments is also effective (Kuhn & Udell, 2007). Unfortu-
nately, these types of debiasing techniques have limited success. In one
study, for example, Munro (2010) found that reading belief-disconfirming
evidence, in a scientific abstract, resulted in increased rejection of science
itself.

One approach that has been somewhat successful is changing the content
or framing of the argument. For example, Horne et al. (2015) found that
presenting evidence surrounding the benefits of vaccines and the risk of
communicable diseases was much more effective for refuting myths about
vaccinations compared to simply trying to present evidence that vaccines
are safe. In general, appealing to personal values (e.g., protecting one’s
own children) is more effective than highlighting the quality of the counter-
argument. Of course, this approach addresses the question of how to change
people’s minds more so than the question of improving their evidence
valuation per se.

We have attempted to help students reason about correlational data by
presenting data in the context of an animated scatterplot (Gao, Seifert,
Shah, & Adar, 2016) in that individual data points start at the origin and
then move towards their correct positions. Participants viewed one of
four conditions: scatterplot presented statically, both x and y animated
simultaneously (i.e., so it looks like points are moving diagonally),
x animated first then y (i.e., points move along the x-axis then upwards),
or y animated first and then x. We found that animating both variables
together reduced the percentage of causal interpretations compared to
the other three conditions. In other words, the animated visualization itself
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highlighted the correlational nature of the data. Although our earlier
discussion pointed to the possible risks of presenting data visualizations
along with misleading information (Ibrahim et al., 2016), it is possible
that when used appropriately, data visualizations can be used to increase
attention to new information as well as support the development of
more correct conclusions.

Visual representations can also help students understand and evaluate
causal models and generate alternative explanations (Oestermeier & Hesse,
2000). In an example closely related to scientific evidence evaluation, Easter-
day, Aleven, Scheines, and Carver (2008) developed a policy deliberation
tutor. College students were asked to evaluate a policy conclusion and rele-
vant evidence (e.g., should junk food advertising be limited; people who
watch more advertisements for junk foods are more likely to be obese). Par-
ticipants first read through some example scenarios (just text with causal
models highlighted, with diagrams that represented accurate causal models,
or with a tool for diagramming causal models). Next, participants were given
a transfer problem with a new scenario. Students who had received the
diagramming tool (even though they did not have it for the transfer problem)
were most likely to generate alternative causal models (e.g., maybe it is TV
watching that causes reduction in exercise and that is the real cause of obesity)
compared to those presented with other materials. Thus, working with the
causal modeling tool served as a scaffold for helping students learn to generate
alternative models and even led to improvements on transfer problems.

7.2 Teaching Scientific Reasoning
There are numerous current approaches to teaching scientific reasoning,
most of which take place in the science classroom. Given that the focus
here is on adult, layperson scientific reasoning, we only briefly discuss
some approaches to teaching k-12 students to develop scientific inquiry skills
with the hope of application to everyday evidence evaluation.

Kuhn has argued for the importance of teaching and learning science via
argument (Kuhn, 2010). In one-year-long curriculum, she had students
examine several topics for approximately 7e8 weeks. For each topic,
students first form groups and generated arguments to support a position
on one side of a controversial topic and predict what some possible
counter-arguments might be. Students then discussed the topic with a
student on the opposing side via a computer interface (so that the arguments
remain visible) and reflected on their arguments in writing. After several
sessions, they met together with their group to plan a formal debate. The
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topics were social and political rather than traditional science topics (for
example, one topic posed “Should a misbehaving student be expelled from
school?”). Of course, these topics require searching for and evaluating evi-
dence. She has used the same approach with more traditional science topics
(such as the extinction of dinosaurs; Kuhn, 2010). Both curricula led to im-
provements in reasoning about evidence more generally, though the science
context applied more to social science than vice versa (Kuhn, 2010). In
another study, she tested a smaller scale social science 3-week project-based
inquiry curriculum with low-SES children as they addressed a real-life social
science question about figuring out what is effective for reducing teen crime.
Students who participated in the curriculum improved in their understanding
of control of variables on both standardized measures, as well as in an inter-
view context, whereas students who merely observed the curriculum in prac-
tice did not show improvement (Jewett & Kuhn, 2016).

Numerous studies have focused specifically on teaching “control of
variables”, one of the key necessities for scientific validity (Klahr & Nigam,
2004; Kuhn & Dean, 2005; Lorch et al., 2014). Schwichow et al. (2016)
published a meta-analysis that includes 72 studies whose goal is to teach
control of variables. Overall, control of variables instruction is fairly
effective, with an average effect size of 0.62. This study did find several
features of control of variables instruction helped ensure students’ under-
standing and transfer of this concept. Specifically, effect sizes were larger if
the instruction involved presenting students with demonstrations of good
experiments. In addition effect sizes were also larger when instruction
involved activating “cognitive conflict” by presenting flawed experiments
with obvious alternative explanations and thus highlighting the importance
of control of variables. Control of variables training has successfully been
shown to transfer to some everyday science reasoning tasksdspecifically,
children who received control of variables training were better able to
critically evaluate science fair posters and noticed when studies did not
appropriately control for variables (Klahr & Nigam, 2004).

Nisbett et al. also focused on teaching individual reasoning strategies or
concepts (e.g., law of large numbers). In a classic study, Fong et al. (1986)
found that a combination of explicit, rule-based training plus examples
was the most effective for teaching the law of large numbers in a manner
that transferred to everyday science reasoning contexts. Furthermore,
students who had formal statistics training were best able to apply statistical
reasoning principles to everyday contexts. In fact, students who majored in a
traditional science domain (chemistry) did not do as well on everyday
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science reasoning contexts compared to students who majored in social
sciences with statistics training (psychology). These results suggest the
promise of teaching science reasoning for transfer to everyday contexts by
using a combination of rule- and example-based approaches; ideally, these
examples should include everyday contexts (see also Fong & Nisbett,
1991). This approach towards teaching reasoning has been successful in
several other content areas. For example, Schoenfeld (1979) showed that
explicitly teaching five problem solving heuristics and practice problems
was more successful than merely having students solving the same set of
practice problems without heuristics training.

Another important approach to teaching scientific reasoning is to focus
on integrating science activities with statistical literacy. Lehrer et al. had
students do authentic measurement activities to learn about things like
precision of measurement, error, variability and so forth. Students who
experienced these activities essentially reinvented important statistical
principles (Lehrer, Kim, & Schauble, 2007; Lehrer & Romberg, 1996;
Lehrer & Schauble, 2004). A similar approach to slightly more sophisti-
cated/higher-level statistical reasoning activities has been developed by
Sedlmeier for adults (e.g., Sedlmeier, 2002).

Teaching students “model-based thinking” via rich simulated scenarios
in which they can manipulate variables and evaluate the effects of these
changes on other variables are excellent for teaching students about complex
systems (e.g., Marx, Blumenfeldt, Krajcik, & Soloway, 1997; Schwarz et al.,
2009). Such rich inquiry activities give students a much deeper understand-
ing of notions of explanation and complex interactions between variables;
students who experience these activities think much less simply about evi-
dence and complex systems (Windschitl, Thompson, & Braaten, 2008).
However, it is not clear how they apply these inquiry processes to everyday
science contexts such as social science, health and behavior.

As a whole, the science and statistics education studies outlined here
suggest some promising strategies: identifying and teaching specific evidence
evaluation concepts (such as control of variables) in the context of rich
inquiry. To our best knowledge, many interventions focus on one or a small
number of evidence evaluation concepts like the law of large numbers,
regression to the mean or control of variables. In contrast, there are
numerous threats to validity that do not seem to garner as much attention.
One reason may be that many evidence evaluation skills are taught within
traditional and relatively basic physical science contexts. As discussed in
the introduction, social, behavioral and health science content may be
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more susceptible to threats to validity, many of which are not the focus of k-
12 curricula. In our brain training example studies, the potential problems
were threats to construct validity, external validity and a threat to statistical
validity (that of multiple posthoc statistical tests). Even an educated reader
may not have the science evidence evaluation training or content knowl-
edge to evaluate those studies.

8. CONCLUDING THOUGHTS

Good everyday scientific reasoning involves judging whether or not
evidence is consistent with a claim or theory, or whether there are threats
to validity in the evidence that render a claim invalid. Poor scientific
reasoning is almost overdetermined, in that numerous factors negatively
impact performance including reliance on fast and frugal heuristics, influence
of prior beliefs and motivations, poor numeracy and statistical reasoning and
misleading science communication. The problem is clear, but there is less
consensus regarding potential solutions.

One potential solution involves bridging the disconnect between how
students are taught to interpret science in k-12 and how people interpret
science in reality. At least in the United States, students learn that science
is objective and black and white, and there is an emphasis on scientists as
authority figures (Brossard & Nisbet, 2007). Reasoning about scientific
evidence is not “supposed” to involve feelings or be subject to personal be-
liefs or values. However, the reality is that dispositional factors have a power-
ful influence on how people interpret scientific evidence, specifically on the
tendency to think critically about evidence. Thus science instruction as early
as k-12 should not only focus on scientific inquiry skills, but also critical
thinking skills in the context of science evidence evaluation. Students can
be taught to challenge evidence without losing trust in science as an enter-
prise. They can be taught both to trust scientific authority in general and to
take novel scientific findings with a grain of salt. If all students are taught to
approach scientific evidence with an analytical eye, perhaps dispositional and
contextual factors will eventually play a more limited role in determining
whether people think critically about scientific evidence.

Given the importance of dispositional factors (not only for science
evidence evaluation but for reasoning in general; Stanovich, 1999), more
research should address the extent to which these dispositions are malleable
and the type of experiences that might help students gain cognitive
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flexibility/open-mindedness, need for cognition or tendency towards
analytic thinking. Some of the educational curricula and interventions
discussed in our final section likely have the potential for improving dispo-
sitions more generally (such as the argument-based science activities devel-
oped by Kuhn (2010)), and indeed there is some evidence that they do at
least help students understand multiple sides of arguments and avoid “myside
bias”, which is the tendency to focus on arguments supporting one’s position
rather than considering opposition arguments (Stanovich, West, & Toplak,
2013). Another proposal for improving dispositions towards thinking
involves infusing such attitudes throughout the curriculum such that the dis-
positions are “enculturated” (Perkins, Jay, & Tishman, 1993). Perkins and
Grotzer (1997) review some earlier studies whose goal is to teach thinking
and reasoning more generally such as Project Intelligence (Herrnstein,
Nickerson, Sanchez, & Swets, 1986) and Philosophy for Children (Lipman,
1976), both of which focus on depth of thinking; however, most of these
studies did not use standard assessments of thinking dispositions. In a very
preliminary study, we explored whether or not self-reported early life activ-
ities were associated with thinking dispositions. We found that engaging in
arts and reading in childhood was correlated with flexible thinking, need for
cognition and critical thinking (whereas game playing and athletics were
not; Katz et al., 2015).

In addition to dispositional and contextual factors, knowledge about the
scientific processdor the nature of sciencedalso strongly predicts whether
people critically evaluate scientific evidence. This includes epistemic knowl-
edge; for instance, understanding that novel findings are tentative, as well as
knowledge about the research process and the many ways in which scientific
studies can be flawed (i.e., due to threats to internal or external validity).
However, k-12 education does not focus on nature of science issues as
much as they probably should. For example, while there is a substantial
body of literature on teaching control of variables (Schwichow et al.,
2016), perhaps because of its historical import in the field of developmental
psychology (Inhelder & Piaget, 1958), much less research has focused
directly on other specific threats to scientific validity. The Schwichow
et al. (2016) paper points out some key features of successful control of vari-
ables interventions, and testing these in the contexts of threats to validity
might be valuable.

By focusing on control of variables and random assignment as key factors
to consider in the context of evaluating evidence, it is possible that when a
study does involve random assignment, individuals might assume that the
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study is of high quality even if other threats to validity are present. More
research on what the public values as evidence, and whether mentioning
some characteristics of research (such as random assignment or meta-analysis
or, more recently, “big data”) leads to ignoring other possible factors (like
construct validity) is of concern. A possible consequence of the “hierarchy
of evidence” is too much trust in studies that may contain threats to validity.
In applied contexts, RCTs and even meta-analyses are often statistically
sound and avoid threats to internal validity; the source of potential concern
may be construct validity or external validity.

Here, we consider two examples of studies reported in the media for
which the subsequent possible policy impacts were quite high. On 13th
February, 2014, The Diane Rehm Show included a discussion of a meta-
analysis of mammography that found that while use of routine mammo-
grams increased the diagnosis of breast cancer, they did not reduce death
from breast cancer. As experts began discussing the study, several possible
threats to validity were identified, including that the longitudinal study
followed women whose mammograms (by necessity) are less advanced
than those with modern technology (external validity). Attention (or not)
to this problem may influence future policy decisions regarding mammo-
gram use. In another famously controversial example, Levitt and Dubner
argued in their 2005 book Freakonomics that there was no benefit of booster
seats for older children (compared to having children in seat belts). They
based their conclusion on an analysis of crash data. Many in the transporta-
tion safety research community objected to their conclusions for several
reasons (Flannagan, personal communication, 2016). The study used as its
sample a database that consisted only of crashes with one or more fatalities
(sampling bias, a threat to statistical validity). Such accidents are unique
because they tend to be very severe or have vulnerable passengers (e.g., older
adults or anyone who is unbelted); as such, generalizations from that sample
cannot be applied to the population of children in car crashes as a whole, nor
can standard analysis methods be used. Furthermore, many other analyses of
different crash datasets have found benefits of booster seats, as have studies
with different methodologies such as crash dummy tests, belt fit
studies and dynamic simulations (Durbin & Winston, 2005).

The potential serious consequences of the mammogram and car seat
examples highlight not only the importance of evidence evaluation skills,
but also that scientists have a responsibility to communicate their results
with caution. Scientists, including ourselves and the other psychological and
cognitive scientists who might read this chapter, need to reflect carefully
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before communicating the results of an individual study to the general
public. Science is largely incremental, but there seems to be an increasing
tendency towards writing short articles with little methodological detail in
high-profile journals like Psychological Science and the Proceedings of the
National Academy of Sciences. To be published in these forums, it seems help-
ful to exaggerate the novelty of one’s findings, pay insufficient attention to
relevant prior research and perpetuate false dichotomies (Meyer, 2016). In
addition, no single study (or even meta-analysis) with a simple yes or no
question fully resolves questions in the social and behavioral sciences, despite
the implications of many press releases. Asking 20 questions of nature (New-
ell, 1973) is bound to fail.

A final note: this chapter, perhaps more so than other review articles with
keener focus, takes an idiosyncratic view of the literature on science
evidence evaluation. We hope that by presenting research from several
different disciplines, the reader might find some valuable pointers, at least,
to some novel findings.
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